Roll No. Total No. of Pages : 02

Total No. of Questions: 09

MCA (E-I) (2019 & Onwards) (Sem.-3) THEORY OF COMPUTATION

Subject Code: MCA-305B M.Code: 74078

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTIONS-A, B, C & D contains TWO questions each carrying TEN marks each and students have to attempt any ONE question from each SECTION.
- 2. SECTION-E is COMPULSORY consisting of TEN questions carrying TWENTY marks in all.

SECTION-A

- 1. Describe various applications of Finite Automata.
- 2. Explain the principle of Mathematical and Structural Induction along with the examples.

SECTION-B

- 3. Draw a FA with epsilon moves that accepts strings over $\Sigma = \{a, b, c\}$ having any number of a's followed by any number of c's.
- 4. a) Briefly examined Arden's method for the conversion of NFA into DFA with example.
 - b) Discuss MyHill-Nerode Theorem.

SECTION-C

- 5. Convert the grammar $S \to ABb \mid a, A \to aaA \mid B, B \to bAb$ into Greibach Normal Form.
- 6. Explain the process of Push Down Automata. With the help of example differentiate between Deterministic vs. Non Deterministic PDA.

SECTION-D

- 7. Construct a Turing Machine to perform Multiplication.
- 8. Describe Chomsky Hierarchy of Grammar and indicate their recognizers.

1 | M-74078 (S6)-1417

SECTION-E

9. Write briefly:

- a) Define Recursive Set.
- b) Write short note on Turing computable.
- c) Define Unambiguous Grammar.
- d) What is Primitive Recursive?
- e) Explain Automaton.
- Construct a DFA over $\sum = (a,b)$ which produces not more than 3 a s.
- g) State the difference between NFA and DFA.
- h) Define Strong Induction Principle.
- downloaded from Suite State of Define Pumping Lemma for CFG?.
- Explain Parse Trees.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-74078 (S6)-1417